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1. Introduction. Our aim in this article is to derive asymptotic
upper and lower bounds on the components of solutions to a diffusive
model for a three trophic level food chain. The particular food chain
that we have chosen to examine embodies a general form of predator
functional response to prey introduced by Beddington [1975] and DeAn-
gelis, Goldstein and O’Neill [1975]. This form of functional response is
of significance in large part because it can be derived from mechanis-
tic considerations of mutual interference by foraging predators, as in
Beddington [1975] or Ruxton, Gurney and De Roos [1992).

While there is a substantial body of work examining diffusive two
species predator-prey models, particularly those in which the predation
interaction is of Lotka-Volterra form, there have been to date few
studies of diffusive three trophic level models. Moreover, the few such
studies which have appeared, such as Feng [1994], have concentrated
on Lotka-Volterra interactions. Consequently, we believe that an
examination of a diffusive three trophic level model with realistic
interactions between trophic levels is in order. We also believe that
persistence theory techniques such as those we have been developing
in Cantrell and Cosner [1996], for example, are well-suited to such an
examination.

By appropriate rescalings, the class of models which we shall analyze
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can be reduced to the form:

Ou = 1 Au+u(l —u) — Aruv

Bt 1+ Biu+ Cyv
v Ajuv Azvw
1.1 A - : — D
(1.1) Bt = paBv 14+ Biu+Civ 14 Byv+ Cow 21v
Ow Asvw )
6t p,3Aw -+ m - D31'w, in Qx (0, OO)

with

u=v=w=0 ondQx (0,00).
Here ) denotes the bounded spatial habitat shared by the species
in question. The parameters in (1.1) are constants, with pi,p2, s

52 PPN PR pow |
diffusion rates and D 41,D51 y;cdaﬁ;ﬁn death rates in the absence of

prey. The parameters in the intertrophic level interactions, roughly
speaking, represent maximal consumption rate of prey by predator (4;
and A), the rate at which predators reach satiation as prey abundance
increases (B; and By), and the extent of mutual interference between
foraging predators (Cy and Cs).

The general predator-prey structure of (1.1) does not generate a
monotone flow in any reasonable solution space. However, the powerful
notion of monotonicity can be employed effectively to provide asymp-
totic bounds on the components of solutions to (1.1) provided that, as
in Cantrell and Cosner [1996], we examine the equations of (1.1) one at
a time and compare them with solutions to boundary value problems
for single parabolic equations. We begin by obtaining an asymptotic
upper bound for the lowest trophic level, and then move up the food
chain obtaining asymptotic upper bounds. Once we have asymptotic
upper bounds on the components of a solution to (1.1), we repeat the
process obtaining asymptotic lower bounds.

Finally, two additional observations are in order at this point. First,
this kind of asymptotic analysis carries over to modelling contexts
other than reaction-diffusion systems, as in Cosner [1996]. Second,
this approach can be refined as in Cantrell and Cosner [to appear] to
obtain bounds on entire trajectories. However, we shall not pursue
either topic in this article.

2. Preliminaries. Asnoted in the preceding section, the asymptotic
upper, respectively lower, bounds we obtain on the components of the
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solutions to (1.1) derive from viewing the components individually as
lower, respectively upper, solutions to suitable single equation parabolic
boundary value problems. In this context a single equation parabolic
boundary value problem is “suitable” if it admits a globally attracting
positive equilibrium. If such is the case, then the method of upper
and lower solutions can be employed to obtain the desired asymptotic
bounds on the components of the solutions to (1.1). The conditions
for such “suitability” that we shall employ are given in the following
result, which was established in Cantrell and Cosner [1989], see also
Cantrell, Cosner and Hutson [1993], Hess [1977, 1991].

THEOREM 2.1. Suppose that f : @ x R — R is C. Consider the
parabolic boundary value problem

ut = pAu+uf(z,u) in Q x (0,00)

(2.1) u=0 on 80 x (0,00)

and the related linear elliptic eigenvalue problem

plAz+ f(z,0)z2 =0z inQ

(22) z=0 on Of.

Assume, in addition,
(i) (8f/0u)(z,u) <0 forz € and u > 0.

(ii) There is a K > 0 so that f(z,u) <0 forz € Q and u > K.

Let o1 denote the unique real value for which (2.2) admits a solution
z with 2 > 0 in ). Then '

(@) If o1 > 0, (2.1) admits an equilibrium solution u*(z) with
u*(z) > 0 for z € Q. Moreover, any solution u(z,t) of (2.1) with
u(z,0) > 0 has the property that [[u(-,t) — w*(Wcr+aqm tends to 0 as
t — 00.

(b) If o1 < 0, any solution u(z,t) of (2.1) with u(z,0) > 0 is such
that |[u(-, )|l g1+« gy tends to 0 ast — oo.

REMARK. Alternative (b) of Theorem 2.1 always obtains if f(z,0) <
0 on Q. If, however, f(zo,0) > 0 for some zg € {2, either alternative
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is possible and, moreover, which alternative obtains depends upon the
related eigenvalue problem

—Aw = Af(z,0)w in

2.
(23) w=0 on 6.

In this situation, (2.3) admits a unique positive principal eigenvalue
M(f(z,0)), ie., a value A;(f(z,0)) > 0 for which (2.3) admits a
solution w with w(z) > 0 in Q. It is shown in Cantrell, Cosner and
Hutson [1993] that if f(zo,0) > 0 for some zg € Q, then oy > 0 if and
only if p < [ (f(=,0))]7*

Once a suitable parabolic boundary value problem for a single equa-
tion is identified, the desired asymptotic upper or lower bounds arise
via a comparison based on the following well-known result:

__ THEOREM 2.2. Suppose f : QxR = R is C' and that G,u :
Q x[0,T] = R are C? with

Uy > pAt+af(z,a) on 2 x(0,T)

220 ondQx(0,T)

and
. At LN PSR o WY s W x|
g D puheAty | g (W ) Viv wu N vy
u<0 ondQx(0,T).

Then u(z,0) < (z,0) for z € Q implies u(z,t) < @(x,t) for z € Q and
t € (0,T]. Moreover, either u(z,t) = @(z,t) forz € Q and t € (0,7
or u(z,t) < @(z,t) forz € Q and t € (0,T]. '

3. Main results. We may employ the ideas of the previous section
to obtain asymptotic upper and lower bounds on the components u,v
and w of (1.1). We begin with an asymptotic upper bound on u. Since

Aluv

on © x (0,00) with u = 0 on 0Q, u is a lower solution for the parabolic
boundary-value problem

ye = mAy+y(l—y) inQx(0,00)

d
(8.1) y=0 on 90 x (0,00).
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Note that (3.1) is of the form (2.1) with f(z,y) = 1 — ¥, so that
the conditions of Theorem 2.1 are met. Consequently, provided u; <
1/A1(1), (3.1) admits a globally attracting positive equilibrium solution
y*, which by the maximum principle (Protter & Weinberger [1967])
is <1on Q. Let (u(z,t),v(z,t),w(z,t)) be a solution to (1.1) with
u(z,0) # 0 on Q. Let § denote the solution to (3.1) with §(z,0) =
u(z,0). Let € > 0 be given. Theorem 2.1 implies there is a &, > 0 so
that if ¢ > &, [|§(-,t) — ¥*(lgiram < & It follows that if ¢ > &,
|5(z,t) — y*(z)| < € for z € 2 so that §(z,t) < y*(z) +& < 1 +e.
Theorem 2.2 now applies (with § playing the role of upper solution) to
give
u(z,t) < g(z,t) <l+e

forz € Q and t > .. .

Let (u(z,t),v(z,t),w(z,t)) be as above. We now use the above
estimate on u to obtain an asymptotic upper bound on v. Since

Ajuv Agvw

= o\ —
Ut = K2 v+1+B1u+G’1v 1+ Bov + Cow

- D21’U

on £ x (0,00), v is a lower solution for the parabolic problem

Ai(l+e)y

3.2 = poA
(3-2) V=AYt TR 11 6) + Ciy

— Doy

on  x (£;,00) with y = 0 on 9Q x (,,00). That such is the case
follows from the estimate u(z,t) < 1 + ¢ for ¢ > %, and the fact that
Ajuww/(1 + Biu + Cv) is increasing in u. Note that (3.2) is of the form
(2.1) with
_ A1(1 -+ E)
f(:E:y) - 1+Bl(1+€)+01y

so that the conditions (i) and (ii) of Theorem 2.1 are met. Conse-
quently, all solutions to (3.2) with y(z,%:) > 0 converge to a unique
positive equilibrium y}* provided &, is positive when the eigenvalue
problem

_DZI)

A1(1 +E) . .
T+ Bi(1+2) D21> =J,¢ in 2
¢=0 on o

(3.3) Halhg + ¢<
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admits an eigenfunction ¢ which is positive on 2. Such will be the case
for all £ > 0 sufficiently small if

A1/(1+ B1) = Doy — Gz _

K2 & (1)

implies &3,0 > 0. A priori, this requires A;/(1+ Bi) > Dgy. In such a
case, 0,0 > 0 is equivalent to

(3.4) po < < - lel - Dzl) /,\1(1).

Let us assume (3.4) and denote the resulting positive equilibrium to

A
1+ By +Cip
p=0 on dQ x (0,00)

Pt = HoAp+ ( —D21>p in Q x (0, 00)

(3.5)

by y3*. The maximum principle guarantees that y§*(z) < p, where p
is the root of A
1

— Dy =
1+ B:i+Cio n =0,

namely,
(A1 — B1Dg1) — Doy

p= Dy Cy

That & — y2* is a continuous mapping from [0, 00) into C**%(Q) can
be argued as in the proof of Theorem 2.2 of Cantrell and Cosner [1989)].
Hence, if 5 > 0 is given,

- 7\ [ (A1 = B1D21) — Dy
@) < (1+]) [ Bl

for £ € (0,7n) and sufficiently small. Suppose that n > 0 is so given,
and choose an appropriate € = &(n). An application of Theorem 2.2

now guarantees that there is a time Z.(,) > f.(;) so that

(Al - BIDZI) - DZI]

e ) < (L4 )| L1 2A0
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forz € Qandt> 1__&5(,,). As a consequence, if 4; > (1 + B1)Dg; and
(8.4) obtains, there is a ¢, > 0 so that

u(z,t) <1l+n
(3.6)

v(z,t) < (1+7) ( Ao 1355211) - Dm)

for z € Q and ¢ > .

The estimates (3.6) can now be used to obtain an asymptotic upper
bound on w. Since

Ayyvw

= paAw + —220
W= WAt T Gw

had D31w

on © x (0,00) with w = 0 on 8Q x (0,00), (3.6) implies that w is a
lower solution for

((A3~B1Da1)~Da1)
= ps Ay + A2(1+77)[ ' (Dlngl) = ]y
Yt = M3y 1+ Ba(l+ )[((A1—131D21)-D21)] c.
(37) 2 n (Da1Ch) + 2y
in Q x (%,,00)
y=0 on 89 x (&;,00).

~ Dz1y

The model problem (3.7) has the property that all solutions corre-
sponding to nonnegative, nontrivial initial data converge over time to
a unique positive equilibrium y;** so long as 3, is positive when

o ) 5uon)
147 Az[(Al — B1Ds1) — D21] 3 ) o
I‘L3A¢ + <D2101 -+ (1 -+ n)B2[(A1 —_ B1D21) — D21] D31 ¢ = 0'3,1]¢
in
¢=0 ondfd

admits an eigenfunction ¢ > 0. In (3.8), ¢ can be taken as ¢, the
positive eigenfunction corresponding to A;(1). Consequently,

Gy = (1+n)A2[(A1 — BiDg1) — Dyi]
T Dy Cy + (1 +n)Ba[(Ar — B1D21) — Dai)

— D31 — paAi(1).
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The eigenvalue &3, will be positive for all 7 > 0 sufficiently small if
3,0 is positive. A priori, this requires [Ay — B2 Dg1][(A1 — B1Doy) —
Dg1] — D31 D2:Cy > 0, and in such a case, 3,0 > 0 is equivalent to

As[(Ay1 = B1.Dgy) — Do)
(8.9)  ha < {D2101 + By [(All"‘ 1;11)21) i Dy] D31}/)\1(1)'

The maximum principle guarantees that y3** < p where p is the root
of

A3[(A1 — B1Dgy) — Doy

~ Dy =0,
D91 Cy + B3[(A1 — B1Da1) — Da1] + Co D1 Cip 8
nﬂmn]‘r
iamheaimibeda &)
= [A2 — BaD3;][(A1 — B1Da1) — Day] — D31 Dy Cq
D31C2Dy: Cy )

Arguing as before, we may establish the following result.

THEOREM 3.1. Let (u,v,w) be a componentwise nonnegative so-
lution to (1.1). Assume that [A; — B1Dai] — D2y > 0 and that

(] o N 1A D N\ n 1 n N N <N rm‘,w.t
L =a L QUY=L —y g1y —sl) QLA LA L S M vy oy
pr < 1/A(1)
A
2 < — Dy, /,\1 1
m< | ),

As[(Ay — B1Da1) — Do) ) ]
< - D A1
Ha [(Dzlcl + By[(A1 — B1Dg1) — Do) 3 / (1)

and v > 0 is given, there is a t, > 0 so that
u(z,t) <147
v(z,t) < (1+ ’y)[

(A1 = B1Dgy) — D21]
Dy Cy
(A2 — B3D31)[(Ay ~ B1Dy1) — Do) — D31D2101]
D31C2 D91 Cy

w@n<u+w[

forz € Q and t € (£,,00).
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~ We now turn to asymptotic lower bounds. Once again, let (u(z,1),
v(z,t), w(z,t)) be a componentwise nonnegative solution to (1.1) with
u(z,0) # 0. Since’

Ajuv
= A l—u)- ———o—
U = ’u,+vu( w) 14+ Biu+ Cyv
in 2% (0, 00) with u = 0 on 2% (0, 00), and since Ayuv/(1+Biu+Cyv)
increases in v with A;uv/(1 + Biu + Cyv) < Aju/C; for all v > 0, we
must have that u is an upper solution for the parabolic boundary-value
problem

(3.10) 2z :ulAz+z<1— é—i —z) in © x (0, 00)

z=0 on 99 x (0,00).

In this case (3.10) is of the form (2.1) with f(z,2) = 1— 4;/C; — 2,
and the conditions of Theorem 2.1 are met. Consequently, all solutions

>
to (3.10) with z(z,0) # 0 converge to a unique positive equilibrium 4,
provided g, is positive when the eigenvalue problem

ido+o(1-5) =gp 0

¢=0 ondN

(3.11)

admits an eigenfunction which is positive on 2. Such will be the case
provided
1-4A4;/C1—-o0
LoAfGg A1)
H1
implies that o, is positive. A priori, such requires 1 — A;/C; > 0 and,
in that case, o; > 0 is equivalent to

(3.12) s < [1 - -‘é,-i-] /).

Now (3.12) is equivalent to (1 — A1/C1)/p1 > A1(1). It follows from
Theorem 2.1 that, for @ > A;(1), the parabolic boundary value problem

6 =00+ (a—6) inQ x (0,00)

(3:13) =0 on 8 x (0,0c0)
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admits a unique globally attracting positive equilibrium solution. This
equilibrium is frequently denoted 6, in the literature (see Cantrell and
Cosner [1987], Cosner and Lazer [1984], Eilbeck, Furter and Lépez-
Gémez [1994], for example) and a simple rescaling argument shows
that

Yo = p16((1- 41 /C1) /1)

An upper-lower solution argument now gives that, for € > 0, there is a
t. > 0 so that

(3.14) u(®,t) 2 (1 = e)b(a-4,/01)/m) (@)

formeﬁandtz_ts.

We now use the estimate (3.14) to obtain an asymptotic lower bound
on v. Since

Ajuv Ajvw

1+ Biu+Cv 1+ Bov+ Cow = Dy

vy = poAv +

on £ x (0,00) and Asvw/(1 + Bav + Caw) is increasing in w,v is an
upper solution for the parabolic problem

Ai(1 — e)uz égz _ Dz

‘ = oA -
B18) =l T o 0 Gl

on O x (¢,,00) with z =0 on 90 x (t,,00). Since (3.15) is of the form
(2.1) with

A=) A
14+ Bi(1 —e)hu(z) +Ciz  Co 2

flz,2) =

conditions (i) and (ii) of Theorem 2.1 are met. Consequently, all

>
solutions to (3.15) with z(z,t,)#0 converge to a unique positive
equilibrium %, provided Oy ¢ is positive when the eigenvalue problem

A1 (]‘ - E)"rb* (m) A, _ )
1+Bi(1-e)pu(z) Co D21> =0,.¢6 inQ

¢=0 ondQ

(3.16) Halhg + ¢<
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admits an eigenfunction which is positive on §. For such to be the case
requires a priori that there is an g € Q so that

Ar(1 =)o) _ Ag
T3 B e)nlae) - O T 0%

and in such a case, that

Hence, provided

A1 (20) Ay

3.17 > e o D
(3.17) 14 Bihu(zo) = Co 2
and
Ay, Ao )} -1
1 i 220D ,
(3.18) pa < {’\1 (1 ¥ B, Oy 2

we may argue that, given 17 > 0, there is a ¢, > 0 so that

u(z,t) > (1 —n)a(x)

(3.19) u(z, 1) > (1 - )yl (z)

for z € Q and ¢ € [t;, 00).

Finally, the estimates (3.19) can be used to obtain an asymptotic
lower bound on w. Since
Agvw

= pAw+ —22  _p
We = HaAW Tt Cow Y

on Q X (0,00) with w = 0 on 95 x (0,00), (3.19) implies that w is an

upper solution for
(3.20)

a0
2 = palz + z< Az (1~ 1)l

1+ Ba(l — )Wl + Coz D”) i 6 g 00)
z=0 on QX (t,00).
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The model problem (3.20) has the property that all solutions corre-
sponding to nonnegative, nontrivial initial data coverage over time to
a unique positive equilibrium %], so long as g3, I8 positive when

Ag(1 — )8, )

¢=0 onoQ

(321)  HeAeT (

admits an eigenfunction ¢ > 0. For such to be the case requires a priori
that there is an z; € §2 so that

Az(1 — )yl (1)

L » A N s \ >D
L D2l — )W T1)

and in such a case, that

A2(1 - 77)%/)2* -
Ha < [A1<1+Bz(1—n)¢9* —DSI)] '

These requirements are met, provided

i a7 \

3.22 ¥\t S p

( ) 1+ Bﬂpg* (ml) 3

and

(3.23) <A Az D -
. H3 1 1+ Bayl, v31 .

Arguing as before, we may now establish the following result.

THEOREM 3.2. Let (u,v,w) be a componentwise nonnegative solution
to (1.1). Assume that 1 — A;/Cy > 0, and that (3.12), (3.17), (3.18),
(3.22) and (3.23) hold. Then if v > 0 is given, there is a 1, >0 so that

u(z,t) 2 (1 - 7)¢u(a)
v(z,t) = (1 - )92 (2)
w(:l:, t) 2 (1 - 7)¢2** ((B)
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forz e andte (157,00).

REMARKS. (i) The lower bounds we have obtained above may appear
to the reader as somewhat implicit. More explicit and computable
lower bounds can sometimes be obtained by further application of the
method of upper and lower solutions. Such analysis is carried out for
a logistic equation in Cosner and Lazer [1984] and for a Lotka-Volterra
predator-prey system in Cantrell and Cosner [1996, pages 260-261].

(ii) It is reasonably straightforward to give biological interpretations
of the conditions we impose to obtain asymptotic lower bounds. For
instance, consider (3.12) and (3.17). These conditions are met if
Ay € Cy, A2 € (O3 and D9y <« 1. These relationships mean
that predator mutual interference (as measured by the Cjs) is large
compared with foraging efficiency (as measured by A;’s) and also that
death rates are relatively low. Certainly, further interpretation and
analysis of these conditions is possible and desirable, but we shall not
pursue such at this point due to the spatial constraints of this volume.
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